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Stability of hexagonal patterns in Banard-Marangoni convection
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Hexagonal patterns in ‘Bard-Marangon{BM) convection are studied within the framework of amplitude
equations. Near threshold they can be described with Ginzburg-Landau equations that include spatial quadratic
terms. The planform selection problem between hexagons and rolls is investigated by explicitly calculating the
coefficients of the Ginzburg-Landau equations in terms of the parameters of the fluid. The results are compared
with previous studies and with recent experiments. In particular, steady hexagons that arise near onset can
become unstable as a result of long-wave instabilities. Within weakly nonlinear theory, a two-dimensional
phase equation for long-wave perturbations is derived. This equation allows us to find stability regions for
hexagon patterns in BM convection.
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[. INTRODUCTION pure Marangoni convectiofl7,18. Here we extend these
results to the case when both buoyancy and surface-tension
Pattern formation in systems out of equilibrium has be-effects are present. We will focus on the stability of hexa-
come an active area of reseafdf since the pioneering work gons as the different parameters in the fluid are varied. Sta-
of Bénard a century agf?]. He observed an array of hex- bility analyses are performed by splitting perturbations in
agonal convective cells in a thin layer of spermaceti heate@MPplitude and phase components. We will show that the am-
from below and open to the atmosphere. The liquid layePlitude stability curves obtained previously in Refs2—-15
becomes unstable by the combined action of thermocapillarf® modified by the spatial terms. An explicit two-
(Benard effect and buoyancy forcegRayleigh effect, an dimensional2D) phase equatiosan bg der_lved analytlcglly
instability currently known aénard-Marangoni (BM) con-  from the GLE[19-21), thus giving insight into the physical
vection Later on the vast majority of studies, either theoret-0rigin of long-wave instabilities for hexagons. In this paper
ical or experimental, were made on buoyancy driven convec¥e compute the coefficients in the phase equation, which
tion, which was namedRayleigh-Beard (RB) convection qllows us to complete the stability diagrams for BM convec-
Nevertheless, thermocapillary stresses may be importafon: ) .
whenever a thermal gradient acts on a liquid-gas or a liquid- The paper is organized as follows. In Sec. Il we recall
liquid interface, especially in the case of thin layers, quite Pri€fly the basic equations and boundary conditi@is, and
common situation in many important technological processef€ linear stability analysis of BM convection. Section Il is
[3]. BM convection intrinsically involves two fluids, but the devoted to determining the amplitude equations. We first dis-
gas can be considered as passive when dealing with a liqui§uss the normal form with its coefficients, and, second, we
gas interface. In these circumstances the theoretical descrip@lculate the linear and quadratic gradient terms. The ampli-
tion can be reduced to the usual one-fluid problem with ude instabilities are analyzed in Sec. IV. Section V discusses
wave-number-dependent thermal exchange parantBtet the ph_ase equation and th'e stabiljty regions for BM convec-
numbej [4]. From the experimental angle this approxima- tion. Flnally,_Sec. V_I contains a brief summary of the resqlts
tion is ensured by thinning the gas gap between the quuidmd comparison with relate(_:l_work. For_ the _sake of clanty_,
and a cover sapphire lid as much as posgible7]. Convec- W€ have placed some specific calculations in two Appendi-
tive thresholds obtained using this coefficient fit the experi-C€S:
mental values quite well and extend earlier theoretical results
(8].
Several theoretical works have been devoted to the non- Il EVOLUTION EQUATIONS FOR BM CONVECTION
linear analysis of BM convectiof®-18. The weakly non- We consider a horizontal liquid layer of depthheated
linear analysis, studying the relative stability of the differentfrom below and open to the atmosphere, under a temperature
planforms, has been addressed both for pure Marangoni codifferenceAT. In recent experiments a good thermal regula-
vection (no buoyancy [11-13, as well as for the general tion is achieved by keeping the thin air layer in contact with
BM case[15]. Some of these results are in good agreemené sapphire plate with a thermostatic b&8+7]. From the
with full numerical simulations of the basic hydrodynamic difference between the heating plate and this bath, the tem-
equations[14]. The general case, including the stability to perature difference across the liquid lay€F can be inferred
arbitrary perturbations, was studied by BesteHd]. How-  and the thermal exchanges between the liquid and the air
ever, an explicit derivation of th&inzburg-Landau equa- quantified. Not far from threshold, air can be assumed to be
tions (GLE), including spatial terms, has only been done fora passive mediunj4], so we can deal with the one-fluid
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model. Those experiments have been performed in conve®erturbations around this state=v, 6=T—T.ong, T=p
tive cells with a horizontal length>d, so that an infinitely  — p;onq Satisfy
extended layer can be assumed for calculatfdhs(Quanti-

tative but not qualitative differences between theoretical and _q| v _ 2
experimental results would appear for such big aspect ratios. Pr ot T(v-V)v|=—Vm+Rade+V*, @)
Within the Boussinesq approximation and using the stan-
dard notation, the equations governing the problem ex- 5
pressed in rescaled nondimensional variafftdstained di- 57 T (v V)o=w+ V70, 8
viding space, time, velocity, and temperature dyd?/«,
k/d, andAT, respectively read as V.v=0, (9)
v , . _
-1 7Y . __ 2 with the boundary conditionéc):
Pr o +(v-V)v Vp+Rabe,+V-y, (1)
v=0, =0, atz=0, (10
a6 )
5 T(v-V)e=V79, 2 o>w+MaVio=4,0+Bi 6=w=0, atz=1. (11
V.v=0 3) It is possible to write Eqs(1)—(3) in a more compact form:

where buoyancy effects are characterized by the Rayleigh LE=MH), (12)
3

number Re agd®AT/vk and Prew/k stands for the \yheref=(v,4,) denotes the eigenfunctions afdhe lin-

Prandtl number. For the usual silicon oils used in experixg, operator, defined as

ments P#100, so we can take Pt=0 as a reference value ’

in the following. High Pr numbers mean that the dynamics is V? Rae, -V
ruled by the temperature field and the mean flow effects are B 2
negligible. L=\ & V ol (13
Experiments on BM convection are most frequently per- v 0 0
formed with a rigid, heat-conducting lower plateopper, )
aluminum, silicon. We will therefore consider the bc and.\ stands for the nonlinear terms:
v=0, T=T,, atz=0. (4) Prifow+(v-V)v]
The liquid-air interface is assumed to be undeformable, par- M) a6+ (v-V)o ' (14
tially conducting and with a temperature-dependent surface 0
tension:

. 2 2 Linear stability analysis
w=d,0+Bi 6=d;w+MaV 6=0, atz=1, (5 ) ]
We use the growth rate as the eigenvalue for the linear

where Bi (Biot numbej accounts for the heat transfer operator{15], so that

through the interface. In general, Bi is a spatially dependent

2 -
parameter but, for simplicity, we will take a constant refer- [ V- Rae; —V\ [v Prt 0 0\ /v
ence value B&0.1 typical in experiments. For very thin lay- e, V? 0 fl=¢| 0O 1 O
ers [d<0.3 mm) surface deformations can become impor-
o . . . v 0 0 T 0 0 0 T
tant, giving rise to a longwavelength instability of the flat (15)

interface[22]. In the usual BM experiments, however, the

thickness of the fluid layer is at least of the order of thespjutions of these equations are expanded in terms of normal
millimeter and the surface deformation is negligible. Ther-modes:

mocapillary effects are quantified by means of the Ma-

rangoni number Ma ydAT/pv, related with Ra through a  (v,,6,,,7,)=[U%(2),V5(2), W5(2),0%(2),115(2) Je'* %,
constantl’ =Ma/Ra= y/pagd? that depends on the charac- (16
teristics of the fluid and on the liquid depth The limit I"

—.0 corresponds to RB convection, while pure MarangoniwhereW(z) and®%(z) satisfy

convection [ —x) is reached when gravitational forces are

k k 1 k k
absent or the layer thickness is very small {R¥ Ma). We (D?- kz)zwf Rak2®7= Pr 107(D2_ kz)W«/’ (17)
are interested in studying the stability of hexagon patterns as
this parameter” is varied. (D2-Kk?)OK+Ws= 040k, (18

Below a critical value of the temperature difference across .
the layer, the fluid remains in a conductive state: with the bc

Veona=0, Teonq=—2+Tp. 6) WH(0)=DW!(0)=WH(1)=0, (19)
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@5(0) = D@lfy(l) 1+ Bi @l;(l): DZW';(1)+ MakZ';(l)zo. A. Normal forms and amplitude equations

(20) The coefficients in Eq(23) can be obtained from the
basic hydrodynamic equations by means d&alerkin ex-
pansion[15]. We recall briefly the main steps of the this
technique. First EQ.12) is projected over the adjoint modes,
%o the linear part becomes:

(Notice that the singular limik— 0 must be considered apart
[15]. We present this case in Appendiy.A-or each value of
k there is a discrete set of vertical eigenfunctions that ar
indexed with the subscripy. The conditiono=0 fixes the

marginal curve Ma& Ma(k;Pr,Bi,I'). The minimum of this v Prly
curve gives the critical Marangoni and wave number v e s p . e p
(Ma,,k.) at the onset of convection. Let us recall that the (v, 6%, ") L =\ (V5,05 7)o
critical values Ra and Ma lay approximately on the line T
Ma./Mag.+ Ra./Ra.=1 (Nield’s relation[8]) whereM

ac aOc aC aOc ( | I [ ]) Wi Oc =0’k<Pr71V* v+ 0* 0>, (24)

(Ra&y) is the critical value of Ma(Ra) in the limit Ra=0
(Ma=0). Typical values for small Bi are Mg=80 and
Ra,.~670.

In the literature two main criteria have been used to dis- Pri(gyv+(v-V)v)
cern whether buoyancy or thermocapillary effects are domi- v o V)0
nant: (8) Ma,>Rag, [23], equivalent tol'=1 [tan }(T) (v*, 0%, ") 0+ (v-V)
~45°], and(b) MaC>(MalOc/Rebc) Ra, [3], equivalent tal’ 0
=May./Ra~0.12 [tan “(I")~=7°], for Bi=0. The first _ -
criterion is quite restrictive and should be considered as the = a(PrVE v 0% 0) + Pr (v -[(v-V)V])
lower limit of a Marangoni-dominated instability, while the +(6*(v-V)8). (25)
second can be viewed as the upper limit under which the
buoyancy effects are dominant. For typical liquidst] I Second, the f|elds are expanded in series of the linear eigen-
=0.0&*(cm), so that the Marangoni effect is dominant for functions (v .0 ') with time-dependent amplitude coeffi-
d<3 mm and the buoyancy effect fdr>8 mm. cients[26]

Before closing this section let us mention that the linear

and the nonlinear term gives

operator/ is not self-adjoint. Therefore, the adjoint must be v Vi

calculated for a subsequent nonlinear analysis. It is defined ( ):E Aki(t) Z ) (26)
by the relationship: i v,

(F*, L fy=(f,LEf*) (21)  Third, the vertical component and the wave number-
. ) ] ] dependent planar part are expanded separately in(Egs.
in which the scalar produgt) is defined by: (9) and the following hierarchy of equations is obtained:
ki Kinki ki Ak
(a,b)= f abdV= LI|an Ef f f abdz dx dy atAy_O-yAy_l—VEp ; Bk K K)AJAS,  (27)

(22)
where the coefficients3,, (ki ,k; k) depend on the inte-
The form of £* and f*=(v*,7*,6*) are deduced in Ap- grals:

pendix A.
Byvp(ki !kj .k|)

Ill. AMPLITUDE EQUATIONS FOR BM CONVECTION K " « ¢k ‘
. . . : r <V'-[(V‘~V)V']>+<0'(V'-V)0'>)

In this section we perform a weakly nonlinear analysis of = Y p

the hexagon planform observed in BM experiments. We (pr—l K |+ 9 9 )

therefore examine the stability of a hexaggcA et

+Aje’*2 X+ Azel*s X+ c.c. made up of three modes linked by (28)

the resonance conditidn, + k,+ks=0. It is worth mention-

ing that symmetry arguments are sufficient to determine th

normal form for the amplitude8, [25]

ésee Appendix B Near onset the growth rate can be ex-
panded asr=0+ (do/de)e=T, “e. (An explicit expression
for 7o can be found in Appendix A 3.
_ N 2p 2 2 Finally, let us mention that the Galerkin method becomes
TodiAL= €A T afoAs— g1l Adl A~ Gal| Al [AS ) A, useful if the infinite sef(27) can be truncated at a suitable
(23 order. The expansior{26) involves the marginal modes
in which e stands for the distance to threshdid our case (drawn by full arrows in Fig. }, as well as higher harmonics
e=(M—My)/M.;=(R-Ry)/R.) and the coefficients (dashed arrows in the same figur&he latter are damped
79,@,g, andg, depend on the particular problem under con-modes ¢(k")<0) and can be eliminated adiabatically. Up
sideration.(The equations foA,, Az are obtained by cyclic to cubic order in the amplitude equations only the first har-
permutation of the indices monics of the marginal modes must be considered. Besides,
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TABLE Il. Values of £ as a function of" for Bi=0.1.

r 0 tan(10°) tan(20°) tan(40°) tan(70°) tan(90°)

& 0279 0274 0.284 0.285 0.282 0.274

lowing a procedure similar to that for the linear ter(@e-
tailed calculations are given in Appendix)BFinally, the
generalized GLE is obtained

o0 A= €A+ E5(Ny- V)AL + aoPoAs—g1|A2A,

— G| Ay ?+|Ag|D) AL +ias[Ax(Ng- V) Ag

+Ag(Np- V)ALl +ias[ Ay(7s-V)Ag

FIG. 1. Stable and unstable modes.

—Asz(m-V)A], (29
we have taken three vertical eigenmodes, which is enough to
ensure a good convergence. Then the bifurcation problewheren; and 7 stand for unit vectors parallel and perpen-
reduces to EQ.(23), with the identiﬁcationAle';l,A2 dicular to the wave numbefsee Fig. 2 and @, and «, are

EAEZ,A3EA';3. (Explicit expressions for nonlinear coeffi- €@l coefficients given by

cients in the normal form can be found in Appendiy Bhe 3 14 J3 4
values of the coefficients in EqR3) are given in Table | for a,= <_a+ - _a) , ay=— _a, (30)
pure Marangoni convection (R&D), an insulating interface dky 2 9Ky 2 ok,

(Bi=0), and keepingy,(Pr 1=0)=1. _
where a(ky,k;,k3) = 798111(K1,Ko ,k3) (see Appendix B

The terms witha; and «, render the system nonpotential
[27] and correspond tdlilatations and distortions of the
hexagons, respectively. A sketch of their action in Fourier
The stability analysis with respect to inhomogeneous perspace is drawn in Fig. 3.
turbations requires the addition of spatial terms to &3). The values ofa; and «, as functions of" are displayed
Off-critical wave numbersk=k.+q accounting for slight in Fig. 4. As expected, both, anda; vanish for buoyancy-
modulations of a perfect pattern change the coefficients igjiriven convection [—0), the bifurcation becoming then
Eq. (23). One can handle these changes by expanding theupercritical. Howeverg, remains different from zerf29].
coefficients in Taylor series af, performing the calculations |n other ranges of, a; anda, are of the same order ag,.

B. Spatial terms: The generalized Ginzburg-Landau equation
for hexagons

and coming back to real space throughiV. The values of the coefficients; do not vary much in the
The linear spatial term is easily obtained from the growthpmarangoni-dominated regime, i.e, for ta{I") >45°.
rate o (k?,€) = [ e~ &5(k*— k2)*14kZ], &5= €l (20k?)],_ be- In Table Il our values forx; and a, are compared with

ing the correlation length. To lowest ordeik?-kZ)?  those found by other authors for R@ [17,18. We have
~4Kk2(n-q)2, which in real space becomes the usual diffu-taken the same set of parameters as in RET], but the

ive linear terme2(A- V)2. The values o2 as a function of method used to derive the amplitude equations is different.
sive 0 : 0 We find a disagreement of about a factor of 4 between the

I are gathered in Table Il . It is worth noticing thef does papers, although the sign of the coefficients coincide. In
not change significantly wheh is varied.

For a pattern of rolls this is the only spatial contribution to
the GLE. However, nonlinear gradient terms of the form
AV A ought to be included for a subcritical bifurcation, as
has been remarked recently by several auti@%-29.
These terms are found after replacing sums by integrals and

expanding coefficient® in Eq. (28) in series ofq and fol- : n,
TABLE I. Coefficients of the amplitude equations for R@ T’.'l
and Bi=0, takingg,(Pr '=0)=1. :
To o
0.167+0.0427 Prt 0.293-0.0666 Pr*
91 92 . ~
1+0.284Pr1+0.0289 Pr?  1.35+0.450 Pr1+0.03009 Pr? FIG. 2. Unit vectors:n; parallel and= perpendicular to the

wave numbers of the hexagonal lattice.
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TABLE lIl. Values of a4 and a5, in different papers for pure
Marangoni convection (Ra0), with the normalizatiortfg:l, g
=1. (In the present paper and in R¢17] the value B0 is cho-

sen)

Reference ay ay Pr

Bragard and Velard@ 1.213 —4.4149

Golovinet al.? (@ —0.4622 —1.0832 913

(b) —0.5572 —1.3057 100
. . . . ) This paper 0.3229 —1.079 0
FIG. 3. (a) Dilatations andb) distortions in a hexagonal pattern.
aReferencd 17).

Ref. [18] the two-fluid problem is analyzed for the condi- PReferencd18].

tions in two experimentgRef. [22] in case(a) and Ref.[30]

in case(b)) and then the comparison with our results is less A linear stability analysis with respect to homogeneous
straightforward. Nevertheless, we think that the conditiongerturbations(amplitude instabilities in the form (a) A4,

are rather similar to ourexcept perhaps for BiThe values =H(1+r;) for hexagons andb) A;=R(1+r1), Ays=ro3
almost coincide, the main difference being the signagf  for rolls, is easily performed. Hexagons turn out to be stable

We will discuss this disagreement in the final section. if the following conditions
Once all the coefficients in Eq29) have been calculated, )
we address the stability of the stationary solutions. u=H%(g1—9gz)+a'(q)H>0, (32
v=2H?(g;+2g,) —a’(q)H>0, (33

IV. AMPLITUDE INSTABILITIES

The bifurcation diagram of BM convection under homo- &€ satisfied. Similarly the stability of rolls is limited by the
geneous perturbations is well known. Here we extend it inCUrve
cluding slightly off-critical wave numbers in the amplitudes P2y _ )
A=A expiq;-X, so that solutions of Eq(29) are easily M=R(91~go) + @’ (Q)R=0. (39
found. These are(a) rolls A;=R,A,=A3=0, with R Hexagons are then stable in the region
=J(e— £29?)/g; and hexagons4,;=A,=A;=H with H
given by (@)= — a'?(q)

° 4(91+29,)

(31) <Eh(q)

+§Sq2<e

_ (@)= o' (a)°+4(e— £50°)(91+205)

H 1
2(91+29,)

12
_a ((31)(§12"'2911)+ 202, (35

in which o' (q) = ap+2qa4 and the signt+(—) corresponds
to up(down-hexagons with u@own)-flow motions in the (92— 91)2
center. The condition¥;>0 is ensured in BM convection

(Fig. 4), so a’(q) normally remains positive, and therefore @nd rolls for

only upflow hexagonsH>0) are stable. Mixed modes of

the form A;=r,,A,=A;=r, are also solutions, but they e>e(q)= @'*(0)0; L E2q? (36)
. .

are linearly unstable with respect to hexagons or rolls. (9,—971)°
05 - ‘ (Notice that these expressions do not coni@jnsince only
Ol perfect equilateral hexagons have been considefesketch

of the bifurcation diagram for fixed is shown in Fig. 5.
In Fig. 6 we represend, €,, ande, as functions of” for
o, q=0. These curves do not vary much for tai'=30° (i.e.,
in the Marangoni-dominated regimebut they steeply de-
scend for tan'I'<30°. In the limit tan I'—0 they vanish,
rolls then becoming the only stable pattern as predicted for
o RB convection. A similar behavior was obtained for coeffi-
/f’f cientsa; (see Fig. 4. The curves in Fig. 6 do not display a
sudden threshold from a Rayleigh to a Marangoni-dominated
0.0 200 0.0 90.0 regime, since the main changes are produced between the
tan'l(l“) two limits c_hs_cussed above. _
The variation ofeg, €, and e, with Pr for Ra&=0 and

FIG. 4. Coefficientsag,;, and a, as functions ofl’ (Pr'*  Bi=0 is gathered in Fig. 7. We have taken the eigenfunc-
=0, Bi=0.1, andg,=1). tions for Pr 1=0, so our results are not expected to be valid

0.0

-0.5
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1A TABLE IV. Comparison among the values &f, ¢, ande, for
pure Marangoni convectiol'(=%), with Pr =0 and Bi=0.
Reference €s(%) € €
Bragard and Lebof —0.56 0.53 1.8
Hexagons Thess and Orszay -0.75
Parmetieret al.© —0.58 0.71 2.37
,\ Bragard and Velardé -0.57 0.64 2.16
; ' This paper —-0.58 0.70 2.34
€ €, &, €
dReferencd 13].
FIG. 5. Bifurcation diagram. Solid lines indicate stable solutionsPReferencd 14].
and dotted ones unstable. ‘Referencd15].
YReferencd 17].

for Pr<1. However, even for rather small Pr they are similar

to those obtained by several authors using other methodgg a full two-layer system would be considered. Obviously
[31,32. In particular they noticed that the quadratic coeffi- these two facts will render calculations much more cumber-
cienta changes sign, inducing a transition from up to downsome. For example, the second effect has been taken into
hexagons for Rr-0.23[31,32, in complete agreement with account by means of the amplitude equations for two-layer
the Valge PJ: 0.227 in our calculation. Notice that threshold BM convection in a recent ar'uc[@_l] In this case, hexagons
values in Fig. 7 do not vary appreciably forP5, so thatwe  are replaced by squares but for 1, i.e, outside the validity

do not expect qualitative changes for sufficiently high Pr.of the perturbation approaddi].

Nevertheless we must mention that mean-flow effects be-
come more important as Pr is decreased. These enter into the
description through a pair of coupled amplitude equations
the derivation of which is rather involved].

A comparison with previous workg3,15,17 for the set Another kind of destabilizing perturbation is in the form
of parameters Ra0, Pr =0, Bi=0, andg=0 is gathered to long-wave modulations whose dynamics is governed by a
in Table IV. Obviously the best agreement is with Rdf5] phase equation. The relevance of this equation for rolls was
because we used the same method to obtain the coefficiergson noticed26], but it took somewhat longer to determine
(although we take slightly different eigenfunctions it for hexagong33,19-21. In the framework of the ampli-

Hexagons have been observed to be replaced by squaresle equationgbut for @;=a,=0) the phase equation for
in recent BM experiment$37,38. Numerical simulations hexagons was obtained [j69—-21]. Other authors have stud-
[39] confirmed also that this transition is possible é¥3 in ied the influence of the quadratic spatial terms on the disper-
liquids with Pr=100, in rather good agreement with experi- sion relation associated with EQR9) (aq,a,#0) [17,34].
mental data. Other theoretical stud[d®] have shown such For this general case an explicit derivation of the phase equa-
a transition by increasing Bi but beyond the value estimatedion with coefficients computed analytically can be found in
from experiments. In principle the perturbative calculationsRef. [35].
in the present paper could be extended to include destabili- Assuming perturbations of Eq29) in the form 4,
zation of hexagons by squares. But an agreement with ex=H(1+r;+i¢;), with r; the amplitude and); the phase of
periments is not hoped to be achieved unless finite-Pr effecthie perturbation and linearizing, we arrive at the system

V. PHASE INSTABILITIES

0.8 - l 3.0
€ )
0.6 a
20
10”
~WE g4t €
1.0 | € ]
02t | PR e
/,’/’
’/
0.0 : . 0.0 . .
0.0 300 _, 600 90.0 0.0 300 600 90.0
tan (') tan (I)

FIG. 6. Values ofes, €,, ande, as functions of tan*(I') (Pr 1=0 and Bi0.1).
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1.5 2.5 i
".
1
200
\
1.0 i
o w !
— \
! 1.0 '
0.5 !
0.5 "
00 ‘ 2 ' 00 ® : - L
107 10° 10 10° 10° 10

Pr Pr

FIG. 7. Dependence of;, €,, ande, on Pr for Ra=0 and Bi=0.

TodiT 1= E507T 1~ 20511+ a’ (QH(rp+13—r11) +H

3 g%(4utv) H? H2a;
=17 2w TagleT V3ay)?~ o (e
an
X| ayt —=|(d2¢p2+ dzp3) + axH (I3t dzeh3) H
3 +\3ay)+ 2 (3ay+ Bay), @1
—29;H%r 1 —2g,H%(ro+r3), (37
a2 22, whereu=0 andv=0 are defined in Eqg32),(33).
70011=20560171F Epdiby— @ (DH (bt dot ) Using the analogy with sound waves we split the phase
ay into a IongitudinanZ, and a transversaEt part, satisfying
+H| a+ NG (dar o+ <93f3)+?a2H V X ¢,=0 (rhombic distortionsand V- ¢,=0 (rectangular
distortiong. These components satisfy
X (dar 3+ d3r2), (39
. 0. =D\V2¢,, dd=DV?¢,. 42
where the notatio@,=n;-V is used. The amplitudes and d Vi d =DV 42
the global phased= ¢+ ¢,+ ¢p3 are strongly damped

modes_ and can be.eliminated adiabatically. As a result, th"f‘herefore the system is stable to phase perturbations pro-
dypamlcs are dominated by tV.VO phase modes. Instead ided thatD,>0 andD,>0. It should be noted, however,
using ¢, and ¢3 we deal with ¢,=—(b2+ ¢s), ‘ﬁ_y that these conditions do not necessarily give the right stabil-
= 1/\/§(¢_2_ ¢3), that are related to the two translational jiy jimits. (In fact, it has been shown that oscillatory, as well
symmetries in thecandy directions, respectively. The final 54 shortwave instabilities can appear under some special cir-
equation reads as cumstance§36].) In order to ensure that the correct stability
limits are obtained, we solve also the fulk& dispersion
i 27 _ 3 relation corresponding to Eq29). In Fig. 8 we show the
7$=D\V¢+(D=DYV(V-¢), (39 phase stability diagrams for several valuesl'ofas well as

the results from the dispersion relati@ircles. For the sake
where the diffusion coefficient®, andD, are analogous to ©0f comparison the amplitude stability curves=0 (lower

the velocity of transversal and longitudinal sound waves irdotted curvg andv =0 (higher dotted curve together with

an isotropic solid, respectively. the roll amplitude limitm=0 (dashed-dotted middle line
This equation can be formally obtained just by symmetryhave been included. Figure(s8, which corresponds to

arguments and therefore it is valid even far from onsetbuoyancy-dominated convection, shows a small, almost

Moreover, it can be extended to include nonlinear tef21§. ~ Symmetric stability region. This becomes big and asymmet-

But the coefficients are difficult to calculate unless the amJic in Figs. 8b)-8(d), in the Marangoni-dominated regime.

plitude equation is used. In this framework ER9) leads to  This behavior is in agreement with the variationgjrand;

the analytical expression85]: seen in Figs. 4 and 6. Those stability regions are bent to the

right, mainly owing to the positive sign of;. A similar

bend is observed in numerical calculatior$,17, a fact
D :E_ Q_2+ H_Z(a — Ba,)? (40) related apparently to a wave number growth when Ma in-
"4 2u 8u ? 27 creasegs|.
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FIG. 8. Phase stability diagram féa) I'=0.05, (b) I'=tan(20°),(c) I'=tan(70°), andd) I'=tan(90°) (Prl=0, Bi=0.1).
VI. CONCLUSIONS bility curves(see Fig. 8 These curves describe a transition

In this paper we have studied the instabilities of hexago-between hexagons and rolls. Experimentally, however, a

nal patterns in BM convection, in the weakly nonlinear re_change of hexagons into squares has been reporte_,-d _by two
gime. We have obtained generalized Ginzburg-Landau equz&erUpS[37_’3a for values O_fez Ma— M"_AC/Ma_CBE" A simi-
tions governing the slow dynamics of hexagon amplitudeéar value is obtamgd by direct numerical S|mul_at|ons of hy-
near onset, which include spatial nonlinear terms. We havérodynamic equationg39]. Although our analysis could be
computed the coefficients of the nonlinear gradient termsextended to account for a transition to squares, the corre-
showing that the three coefficienss are of the same order, SPonding values would lie outside the validity of a perturba-
their value remaining almost constafike the threshold;) tive approach.
when the liquid depth is varied in the Marangoni-dominated But the main contribution of the coefficientg becomes
regime. apparent when dealing with long-wave perturbations. We de-
The stability analysis of the spatially homogeneous case isve aphase equatiotior hexagons and calculate its coeffi-
in good agreement with previous theoretical resultscients in an analytical form. This equation allows us to de-
[12,13,19. From Fig. 6 we can conclude that the thresholdtermine phase-stable regions that fit qualitatively with those
valueseg, €, , €, do not depend so much on the liquid depth computed numerically by other authdiss,17].
in the Marangoni regime, their changes becoming significant In particular we have shown that the phase-stability re-
for thick layers(buoyancy-dominated regimeA comparison  gions do not change qualitatively by increasingvithin the
with experimentg7] is not yet easy. With the data obtained Marangoni-dominated regime, in agreement with numerical
so far onlye; could be compared, but its tiny value might be calculations in Ref[16]. This suggests that the long-wave
influenced by finite-size effect§A experimental setup mea- dynamics of hexagonal patterns can be studied even in rela-
suring the Nusselt number would permit a full quantitativetively thick liquid layers <8 mm for typical fluids.
comparisor. Finally, let us mention that the perturbations considered in
The new spatial terms modify slightly themplitude sta- this paper seem to be the most dangerous for a hexagonal
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pattern, described by amplitude equati¢28]. Although the The corresponding eigenvalue problem satisfies the rela-
Stablllty diagrams derived with this formalism have a limited tion ;k* = U'k , from which it is easy to derive the orthogo_
range of validity we hope that they will suggest further ex-najity tondition:

periments on thresholds, transitions, and sideband instabili-

ties of hexagon patterns in BM convection. <Prflvl;i ~in+ 0:‘ 05j>:0 if y#p orki#k;. (A9)
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APPENDIX A: LINEAR BM INSTABILITY DW=oD W, (A10)
1. Linear adjoint operator (c—D?)O=W, (A11)

In this Appendix we complete the calculations sketched ir\/vith the be (19) and (20) for k=0. The solution of this
Sec. Il A. Let us recall that the linear problem can be written '

system is
as
V2 Rag, —V\ /v Prl 0 0\ /v W,(2)=0, 0 (2)=siny-o0,z, (A12)
e, V2 0 fl=¢| 0O 1 O 0. where o, satisfies \/_ZUECON_U“/: —Bisiny—-a,. For
v 0 0 - o 0 o \x Bi=0, o,=—(y+1/2)*7".
Al
A 3. Linear coefficients in the normal form
Using the scalar prosluct in qu.lf E”d the condition for The linear analysis is completed by giving an explicit ex-
the adjoint operatof*, L.f)=(f,LS f*) we obtain pression for the relaxation time, and the correlation length
V2 v gé. These are found by expanding the growth rate terms
& - of k? ande=(Ma— Ma,)/Ma,= (Ra— Ra,)/Ra, . After using
£*=| Rae, V2 0 |, (A2)  o(ks,e=0)=dol Ik~ =0, and
\Y 0 0
Pa o 9e
with the bc a(k2)2 k. Jde €=0(9(k2)2 o
u*=p*=w*=60*=0, atz=0, (A3) ) ,
one arrives at the expression
d,0* +Bi 6% +Mag(,u* + d,0* ) =0, o e
(k3 e)=— e————|  (K=kd)?
Iu*=du*=w*=0, atz=1, (A4) de| __, (k)| _,
where f* = (v*,7*,6*) are the adjoint eigenfunctions. Ex- . & s o
panding the fields into normal modesv*(6*,7*) =797 €~ R(k -k |, (A13)
_IL2\/k k ki ik-
=[k*Vi*(2),07 (2),115* (2) e the former system be- c
comes with 7o and €2 given by
(D?—k?)2Wh* — @ =Pr k" (D2—Kk?)WK* | (A5) P 1 e
7615; , 355% (A14)
2_L2yv@k Ankx __kx ok _
(D“=k*) O + Rak* W * =0 * 07, (AB) 0 k=k,
with the bc Taking into account thatk=|k¢+g], then K2—Kk3)?
=4k3(n-q+q?/2k.)? and transforming back to real space
0" (0)=DOY (1)+Bi®}* (1) ~Mak’DW;*(1)=0,  this term becomes
(A7) o
2nv- v A15
WH* (0)=DWHK* (0)=W-* (1)=D?W,* (1)=0. (A8) o\ YT 2 ) (AL3)

066307-9



B. ECHEBARRIA AND C. PEREZ-GARCIA PHYSICAL REVIEW E 63 066307

which is the rotationally invariant linear spatial term introduced by Gunarttag 28]. In the case of hexagons the term with

the Laplacian can be neglected due to the resonant interddi@n
After projection of Eq.(A1) over the adjoint modes and integrating by pasntg* V26> we obtain foro

* 2 9% p\ _ * — * . * *.V2
(0w (V20* ) = M0 0) 1 — (V- V) m) +RAW* 0) +(v* - V2 (A16)

(1617)+PrK|v|?)

Close to onset MaMa.(1+¢€), Ra=Ra.(1+¢€) so, finally
we arrive at a useful, explicit expression fey

1
Rackgfo W* @dz—MakDW* (1)0(1)

—-1_
To —

1
| nie1z+prxpwiz kw1
0
(A17)
APPENDIX B: NONLINEAR TERMS IN THE AMPLITUDE
EQUATIONS

Considering the fieldg=[v, 8, 7] we can sketch Eq$9)
in a compact form

ap=LRV)y+ M), (B1)

where N(#) is a quadratic nonlinearity. Close to onset we
consider horizontal slow spatial variations through the ex-

pansion w(x,z,t)=E%kiA:i(x,t)f';c(z)eikc'x. Moreover, in

Fourier space, the planform is composed of finite regions

around perfect peakk Ek.+q), so that we can take

A‘j(x,t)=fqzoaji(t)eiqi*dq, (B2)
and therefore we can write fa#(x,z,t)
z//(x,z,t):%‘, J'a';(t)l//'f/(x,z)dk
=Zy f al(t) f4(z)e'**dk. (B3)

Replacing these expansions into EB1) and projecting
over the adjoint modes we arrive at

al(t)=o¥(k,R)al(t)

+2 dk’f dk”B%S‘p(k,k’,k”)b‘(k—k’
o.p

—kma¥ (Ha' (1), (B4)
in which we have defined the coefficieBtas
£ (2) NTT% (2),15'(2)]
IS'V,(s,p(k,k’,k”)=< ? A >. (B5)

(% (2),14(2))

We consider the modes in Fig. 1, which can be classified as
unstable  [o,=0,(k;,ky,K3)] and stable [og
<0,(kg,K4, - .. kg)]. The latter can be eliminated adiabati-
cally (a'$=0):

al;s(t) — ﬁz j dk” dk’"C@ﬁpa( ks_ K" — krr/)ag’a!k)"' ,
P
(B6)

where C(;Bp(k,k’,k”)=BaBp(k,k’,k”)/a§. This allows to
write

é\‘f/(t)za';(k,R)a';(t)Jr% fdk’f dk” B,,s,(k,k' k") 8(k
—k'—k"ak (Ha'(t)

- dk’fdk”fdk’”&(k—k’

oppB

—ko) Dy sk, k' k" kM)A (Dak (DAY (1),  (B7)

with

Dk K KK =2 f kg (ks —k"—K")

X B,,5(K,K" kK")C,5,(Ks, K" ,K").
(B8)

The coefficients3 can be split into a thermal pa’ and
a viscous parf3?, B=B%+B". From Eqs(8)—(11) one ob-
tains

39 (65 (V5 -V)6y)
o (PrIVE* VR4 gk gy

(k.k' k)=

(VL VOVETD)

K% k k% Aky\ ’
(vy Vo, +Pro7 07)

(k,k' k"= (B9)

v
yp

which can be simplified after employingv‘;(z)
=(ikDWy/k2,Wy), so the operator \{,-V) vyields
(—k-k'DW, /k+W,D):

066307-10



STABILITY OF HEXAGONAL PATTERNS IN BENARD- . . . PHYSICAL REVIEW E 63 066307

1 et o expressions. Therefore we compute separately quadratic and
B, (kK k)= 5k,k,+k,,f 04| — ——DW; 0k cubic terms.
k,,k” 0 kfz
1. Quadratic gradient terms
k/ k"
+W; D6, |dz, (B10) The coefficients «; and «, are derived from
a’(klik21k3):TOBlll(kl7k2!k3) emp|0ylng the faCt that
vertical modes of order higher than the first one do not con-
) o 1 (k'-K")(k-K") tribute to the expansion. Therefore arouke k., we can
Lo (KK KN =2 S| | — .
k’,k” ' 0 k’ k"z WI’I'[e
’ U i ’ "2 ,r2 | n2 2 1,2 1,2 da ’ "2
X DWK* DWE DWK' + — a([k" KKK =alke ke ko) +——1 (k" +K]
k k2:k§
. , (k/~k”)k2
ke \n k' 2y0 /K Jda
X DWS* W D2WK ez —k)+— (k'2—K?)
K| a2
¢
X W DWK WK+ WR* WA DWK | dz. p
Y s 'p Y 2 P _ (k,,z_kg), (BlZ)
JK" n2— 2
(B11) kre=ke

Fortunately symmetry and orthogonality relations, as well as . ) .
suitable approximations, allows us to further reduce thesand sincek=k.+q,k’=kL"*+q’ k' =k."?+q", we obtain

f (k2 k'2 k") ay; tay, 2elk *s(k—k' —k") dk dk’ dk”
k,k" K"

:f a,(|k’ +k/'|2,k!2,k112)a|k4,r1alktzefik'.xe—ik”.x dk’ dk"=eikc'xaoﬁJrlEJrz-i-eikcxj dqr dquefiq’-xefiq”,x
k" K" qrqrr

da . Jda ' da . da
X 2k|+1' "4 12 + 2k|+1' " /2)+ 2k|+2' " "2 +

—&k,z( ¢ -9’ +q") _akZ( ¢ "a'*q —ak,,z( ¢ -q'+q") e
><(2kic+2'q"+q”2+ Zki(;+1'q’,+2q"q") aqu,rlai;;Z

2 2

. L — Vol — Vel — — —
:elkc-x| aOA|+1A|+2+iIB1 A|+2( ni+l'V+i E)AI+1+AI+1( ni+2-V+i E)AH—Z +i,32 A'+2(ni+2~V)A'+1
S S
— — i — —
+Al+l(ni+1'V)A|+2+k—(VAI+1)(VAI+2) }’ (813)
C
|
in which — da ®16
2= Cé,kz‘
ag=a(ke, K, Ke), (B14)
Taking into account thah,= —nNg/2+ \373/2, Ng=—N,/2
By=2k, ga | da)_ . o o) (B15) — V372 and neglecting second-order derivatives, we can
k"% ok? ak'? k2 write the quadratic gradient terms as
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a—agtia AT, V)ATT24H AT+ 20 VAT

Hiap[ A (7 VIAT 2= AT 2 (7 V)ATHY,

(B17)
with
_ ok &a+1&a_z9a+1z9a B18
T 2o |ae e B
3 da 3 da
as 3 —J— (B19)

=2k 2T W

2. Cubic terms

PHYSICAL REVIEW E 63 066307

AR C(Kg Ky, — k) AKTAK, (B25)

This is the general scheme to eliminate horizontal modes.
But vertical modes enter also through nonlinearities. For ex-

ample, for the quadratic terms one gets

DX SawrrrBys (k! KA AX
5p k’,k"

=Bi1a(kq,kz ,k3)K§2K§3+ > By,i(ky Ko, ks)

X (AZAL+APAL), (B26)

and damped mode&';2 (v# 1) contribute to the cubic term

The cubic terms in Eq(B7) are rather complicated but through
consistently with an amplitude expansion up to the third or-

der we can reduce the integrals to sums over the minimal ke

resonant terms. So we deal with|=k., i=1,2,3, and am-
plitudesA,, in terms of which the Eq(B7) becomes

Aki(t) = o1k, R)AK1+ B(ky ks, kg) Ak2AKs

+ 20 ik +k A Blky K ko)
k,,k/l

kN k/”
xk%/” Sic, ker+krC(Ks K" K AR AL

(B20)

For example, the equation fa*t includes a termAkzAks,
but also the resonant terms

ky+ko— B(ky,kq ko) AKiAke
k,—ky— B(ky ks, —kq)Ak7aK
Ak (B21)
ks+ko,— B(Kq ks, ky) AksAkz
ks—kg— B(ky ks, —kg)AksAKs
Then the enslaved modes contribute as

AR C(Kkg, Ky, — kp) (AR1AKi+ Akeakz + akspks)

(B22)
AX7—C(k7, Ky kp)AKTAKL (B23)
AR5 C(Ks, ky, — ky) AK1AK2 (B24)

B,11(ky ko k
11(k1. ko S)Nf’ﬁf,

= -~ (B27)

Taking all these facts into account one arrives to the nor-

mal form Eq.(23):

TodAL= €A1+ aBoAz— 01 A1 | Ar|2— g,A (| Al 2+ Agl?),
(B28)

with the coefficients

a= 1oB111(Ky Kz, K3), (B29)
Blvl(k1!k7 v kl)Bvll(k7!kl 1k1)
k7

14

glzTOEV

Bi,1(Kq,Kq,Ko) B,11(Kg Ky, — kK
. Bra(kyky ko) k011< 0.k ul, 530

14

o

Blvl(kl1k51k2)BV11(k51k11_ k2)
o

gzzToEv

+ Blvl(kl vkl!kO)Bvll(kOlkl T kl)
ko

(o
v

+Blvl<k1,k2,k3>6m<k1,k2,kﬂ
Ky :
g

(B31)
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